1、老化的概念:电气设备中的绝缘材料在运行过程中,由于受到各种因素的长期作用,会发生一系列不可逆的变化,从而导致其物理、化学、电和机械等性能的劣化,这种不可逆的变化通称为老化。
2、聚合物老化的主要表现:
2.1表观变化:材料变色、变粘、变形、龟裂、脆化
2.2物理化学性能变化:相对分子量、相对分子质量分布、熔点、溶解度、耐热性、耐寒性、透气性、透光性等;
2.3机械性能:弹性、硬度、强度、伸长率、附着力、耐磨性等;
2.4电性能:绝缘电阻、介电常数、介电损耗角正切、击穿强度等
3、聚合物老化的本质:
3.1交联:交联至一定程度前能改善聚合物的物理机械性能和耐热性能,但随着分子间交联的增多,逐渐形成网络结构,聚合物变成硬、脆、不溶不熔的产物;
3.2降解:分子量减小,导致机械性能和电性能降低,出现发粘和粉化。
3.3环境老化:含有酸、碱、盐类成分的污秽尘埃(或与雨、露、霜、雪相结合)对绝缘物的长期作用,显然会对绝缘物(特别是有机绝缘物)产生腐蚀。
3.4环境老化原因:
阳光紫外线的能量大于多数有机绝缘物中主价键的键能,多数有机绝缘物在紫外光的作用下会逐渐老化。
高分子电介质吸收紫外光能量后,有部分分子被激励,当存在氧气或臭氧时,还会引发高分子的氧化降解反应,称为光认化反应。光氧化反应是环境老化中的重要过程之一。
4、电老化:绝缘材料在电场的长时间作用下,物理、化学变化性能发生变化,最终导致介质被击穿,这个过程称为电老化。主要有三种类型:电离性老化(交流电压);电导性老化(交流电压);电解性老化(直流电压)
5、电离性老化:(1)绝缘材料中存在气泡或气隙(工艺缺陷、冷热收缩、材料分解、材料受潮)(2)气体介质的介电常数接近为1,比固体介质的介电常数小得多,在交变电场下,气隙中的场强比邻近的固体介质中的场强大得多,而其起始游离场强(常压)通常又比固体介质的小得多,所以,游离基最容易在这些气隙中发生,在某些气隙中,甚至可能存在稳定的火花放电。(3)气隙的游离基将导致
6、电导性老化:在两电极之间的绝缘层中(最常见的是在电极与绝缘的交界面处),存在某些液态的导电物质(最常见的是水)
当该处场强超过某定值时,这些导电物质便会沿电场方向逐渐渗入绝缘层深处,形成近似树状的痕迹称入水树枝。水树枝的累积发展将最终导致绝缘层的击穿。
产生水树枝的机理可能是:
水或其他电解液中的离子在交变电场作用下反复冲击绝缘物,使其发生疲劳损坏和化学分解;
电解液逐渐渗透、扩散到深处,形成水树枝。
产生和发展水树枝所需的场强,比产生和发展电树枝所需的场强低得多。
7、电解性老化:在直流电压长期作用下,即使所加电压远低于局部放电起始电压,由于介质内部近行着电化学过程,介质也会逐渐老化,最终导致击穿。
8、热老化:在较高温度下,电介质发生热裂解、氧化分解、交联、以及低分子挥发物的逸出,导致电介质失去弹性、变脆、发生龟裂,机械强度降低,也有些介质表现为变软、发粘、失去定形,同时,介质电性能变坏。热老化的程度主要决定于温度及热作用时间。此外,诸如空气中的湿度、压力、氧的含量、空气的流通程度等对热老化的速度也有一定影响。
第五节 电动机中绝缘材料的击穿
1、击穿的概念:外电场增大到某一临界值,绝缘材料的电导突然剧增,材料由绝缘状态变导电状态。击穿机理:电击穿、热击穿。
2、热击穿:在电场的作用下,介质内的损耗转化成的热量多于散逸的热量,使介质温度不断上升,最终造成介质本身的破坏,形成导电通道
3、电击穿:由于电场的作用使介质中的某些带电质点积聚的数量和运动的速度达到一定程度,使介质失去了绝缘性能,形成导电通道。
主要特征:
——电压作用时间短
——击穿场强高
——电介质温度不高
——与电场均匀程度相关
——击穿强度随温度升高而增大,或变化不大
4、老化:电气设备中的绝缘材料在运行过程中,由于受到各种因素的长期作用,会发生一系列不可逆的变化,从而导致其物理、化学、电和机械等性能的劣化,这种不可逆的变化通称为老化。
5、老化影响因素:
物理因素——如电、热、光、机械力、高能幅射等;
化学因素——如带电气体、臭氧、盐雾、酸、碱、潮湿等;
生物因素——如微生物、霉菌等。